230 research outputs found

    A switch from constitutive chemical defense to inducible innate immune responses in the invasive ladybird Harmonia axyridis

    Get PDF
    The harlequin ladybird, Harmonia axyridis, has emerged as a model species for invasion biology, reflecting its remarkable capacity to outcompete native ladybird species when introduced into new habitats. This ability may be associated with its prominent resistance to pathogens and intraguild predation. We recently showed that the constitutive antibacterial activity present in the haemolymph of H. axyridis beetles can be attributed to the chemical defence compound harmonine. Here, we demonstrate that H. axyridis differs from other insects, including the native ladybird Coccinella septempunctata, by reducing rather than increasing the antimicrobial activity of its haemolymph following the injection of bacteria. However, both species produce new or more abundant proteins in the haemolymph, indicating that bacterial challenge induces innate immune responses associated with the synthesis of immunity-related proteins. Our results suggest that H. axyridis beetles can switch from constitutive chemical defence to inducible innate immune responses, supporting hypothesis that inducible antimicrobial peptides protect host beetles against pathogens that survive constitutive defences. These alternative antimicrobial defence mechanisms may reflect a trade-off resulting from fitness-related costs associated with the simultaneous synthesis of harmonine and antimicrobial peptides/proteins

    Next-generation sequencing analysis of the Tineola bisselliella larval gut transcriptome reveals candidate enzymes for keratin digestion

    Get PDF
    The clothes moth Tineola bisselliella is one of a few insects that can digest keratin, leading to the destruction of clothing, textiles and artwork. The mechanism of keratin digestion is not yet fully understood, partly reflecting the lack of publicly available genomic and transcriptomic data. Here we present a high-quality gut transcriptome of T. bisselliella generated from larvae reared on keratin-rich and keratin-free diets. The overall transcriptome consists of 428,221 contigs that were functionally annotated and screened for candidate enzymes involved in keratin utilization. As a mechanism for keratin digestion, we identified cysteine synthases, cystathionine β-synthases and cystathionine γ-lyases. These enzymes release hydrogen sulfite, which may reduce the disulfide bonds in keratin. The dataset also included 27 differentially expressed contigs with trypsin domains, among which 20 were associated with keratin feeding. Finally, we identified seven collagenases that were upregulated on the keratin-rich diet. In addition to this enzymatic repertoire potentially involved in breaking down keratin, our analysis of poly(A)-enriched and poly(A)-depleted transcripts suggested that T. bisselliella larvae possess an unstable intestinal microbiome that may nevertheless contribute to keratin digestion

    Immuno-physiological adaptations confer wax moth Galleria mellonella resistance to Bacillus thuringiensis

    Get PDF
    The Greater wax moth, Galleria mellonella, is a pest of beehives and is gaining a reputation as an important organism for modelling host-pathogen interactions. A G. mellonella population was selected for enhanced resistance to Bacillus thuringiensis (Bt), which is a widely-used entomopathogenic biological pesticide. Resistance and defence mechanisms were investigated in this insect line, and compared with a non-selected (suspectible) line. We also investigated the possible cost of those survival strategies. In the uninfected state, resistant insects exhibited enhanced basal expression of genes related to regeneration and amelioration of Bt toxin activity in the midgut. In addition, these insects also exhibited elevated activity of genes linked to inflammation/stress management, and fat body immune defences. Following oral infection with Bt, several of these genes wwere more highly expressed in resistant insect than in the susceptible line. Gene expression analysis reveals a pattern of resistance mechanisms targeted to anatomical sites predominantly attacked by Bt. The resistant insect concentrates its response towards tissue repair. Unlike the susceptible insects, Bt infection significantly reduced the diversity and richness (abundance) of the gut microbiota in the resistant insects. These observations suggest that the resistant line not only has a more intact midgut but is secreting antimicrobial factors into the gut lumen which not only mitigate Bt activity but also affect the viability of other gut bacteria. Remarkably the resistant line employs these multifactorial adaptations for resistance to Bt without any detectable negative trade-off, since the insects also exhibited higher fecundity

    Sequestration of defenses against predators drives specialized host plant associations in preadapted milkweed bugs (Heteroptera: Lygaeinae)

    Get PDF
    AbstractHost plant specialization across herbivorous insects varies dramatically, but while the molecular mechanisms of host plant adaptations are increasingly known, we often lack a comprehensive understanding of the selective forces that favor specialization. The milkweed bugs (Heteroptera: Lygaeinae) are ancestrally associated with plants of the Apocynaceae from which they commonly sequester cardiac glycosides for defense, facilitated by resistant NaNa+/K+-ATPases and adaptations for transport, storage, and discharge of toxins. Here, we show that three Lygaeinae species independently colonized four novel nonapocynaceous hosts that convergently produce cardiac glycosides. A fourth species shifted to a new source of toxins by tolerating and sequestering alkaloids from meadow saffron (Colchicum autumnale, Colchicaceae). Across three milkweed bug species tested, feeding on seeds containing toxins did not improve growth or speed of development and even impaired growth and development in two species, but sequestration mediated protection of milkweed bugs against two natural predators: lacewing larvae and passerine birds. We conclude that physiological preadaptations and convergent phytochemistry facilitated novel specialized host associations. Since toxic seeds did not improve growth but either impaired growth or, at most, had neutral effects, selection by predators on sequestration of defenses, rather than the exploitation of additional profitable dietary resources, can lead to obligatory specialized host associations in otherwise generalist insects

    Elucidation of the MicroRNA Transcriptome in Western Corn Rootworm Reveals Its Dynamic and Evolutionary Complexity

    Get PDF
    Diabrotica virgifera virgifera (western corn rootworm, WCR) is one of the most destructive agricultural insect pests in North America. It is highly adaptive to environmental stimuli and crop protection technologies. However, little is known about the underlying genetic basis of WCR behavior and adaptation. More specifically, the involvement of small RNAs (sRNAs), especially microRNAs (miRNAs), a class of endogenous small non-coding RNAs that regulate various biological processes, has not been examined, and the datasets of putative sRNA sequences have not previously been generated for WCR. To achieve a comprehensive collection of sRNA transcriptomes in WCR, we constructed, sequenced, and analyzed sRNA libraries from different life stages of WCR and northern corn rootworm (NCR), and identified 101 conserved precursor miRNAs (pre-miRNAs) in WCR and other Arthropoda. We also identified 277 corn rootworm specific pre-miRNAs. Systematic analyses of sRNA populations in WCR revealed that its sRNA transcriptome, which includes PIWI-interacting RNAs (piRNAs) and miRNAs, undergoes a dynamic change throughout insect development. Phylogenetic analysis of miRNA datasets from model species reveals that a large pool of species-specific miRNAs exists in corn rootworm; these are potentially evolutionarily transient. Comparisons of WCR miRNA clusters to other insect species highlight conserved miRNA-regulated processes that are common to insects. Parallel Analysis of RNA Ends (PARE) also uncovered potential miRNA-guided cleavage sites in WCR. Overall, this study provides a new resource for studying the sRNA transcriptome and miRNA-mediated gene regulation in WCR and other Coleopteran insects
    corecore